4.7 Article

Soil Surface Roughness Effects on Infiltration Process of a Cultivated Slopes on the Loess Plateau of China

期刊

WATER RESOURCES MANAGEMENT
卷 27, 期 14, 页码 4759-4771

出版社

SPRINGER
DOI: 10.1007/s11269-013-0428-7

关键词

Geographic information system; Loess Plateau; Non-uniform infiltration; Soil surface roughness

资金

  1. National Natural Science Foundation of China [41271288]

向作者/读者索取更多资源

Infiltration is the only way water enters soil on the cultivated slopes of the China's Loess Plateau, so infiltration plays an important role in conserving soil moisture. The objective of this study was to investigate how a soil wetting front created by simulated rainfall migrated in soil with different types of surface roughness. The three types of soil surface treatments studied included surfaces of smooth, medium rough and rough soil. The results showed that, 1) compared with a smooth surface texture, medium rough and rough surface textures have a higher infiltration capacity; 2) the infiltration rate gradually decreases as the wetting front deepens and the rate tends stabilize over time. This change could be described by a logarithmic function; 3) at the early stage of rainfall, the wetting front of medium rough and rough surface textures varied greatly, while the variability of the wetting front decreases markedly after the infiltration rate stabilizes; 4) with increasing depth of the wetting front, the similarity between the wetting front and soil surface profile decreased significantly for the medium rough and rough surface textures. These results indicate that the process of infiltration on cultivated slopes on the Loess Plateau changed from a non-uniform pattern to a uniform pattern as time passed during a rainfall event. Overall, soils with rougher soil surfaces experienced a larger effect of roughness on the process of infiltration.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据