4.8 Article

Fate of antibiotic resistance genes in sewage treatment plant revealed by metagenomic approach

期刊

WATER RESEARCH
卷 62, 期 -, 页码 97-106

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.watres.2014.05.019

关键词

Antibiotic resistance genes; Sewage treatment plant; Metagenomic analysis; Bacterial community

资金

  1. Research Grants Council of Hong Kong [HKU7201/11E]
  2. Natural Science Foundation of China [21177162]
  3. University of Hong Kong

向作者/读者索取更多资源

Antibiotic resistance has become a serious threat to human health. Sewage treatment plant (STP) is one of the major sources of antibiotic resistance genes (ARGs) in natural environment. High-throughput sequencing-based metagenomic approach was applied to investigate the broad-spectrum profiles and fate of ARGs in a full scale STP. Totally, 271 ARGs subtypes belonging to 18 ARGs types were identified by the broad scanning of metagenomic analysis. Influent had the highest ARGs abundance, followed by effluent, anaerobic digestion sludge and activated sludge. 78 ARGs subtypes persisted through the biological wastewater and sludge treatment process. The high removal efficiency of 99.82% for total ARGs in wastewater suggested that sewage treatment process is effective in reducing ARGs. But the removal efficiency of ARGs in sludge treatment was not as good as that in sewage treatment. Furthermore, the composition of microbial communities was examined and the correlation between microbial community and ARGs was investigated using redundancy analysis. Significant correlation between 6 genera and the distribution of ARGs were found and 5 of the 6 genera included potential pathogens. This is the first study on the fate of ARGs in STP using metagenomic analysis with high-throughput sequencing and hopefully would enhance our knowledge on fate of ARGs in STP. (C) 2014 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据