4.8 Article

Modelling cometabolic biotransformation of organic micropollutants in nitrifying reactors

期刊

WATER RESEARCH
卷 65, 期 -, 页码 371-383

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.watres.2014.07.048

关键词

Activated sludge; Biodegradation; Modelling; Micropollutants; Pharmaceuticals; WWTPs

资金

  1. Spanish Ministry of Economy and Competitiveness [CTQ2010-20240, RyC-2012-10397]
  2. Xunta de Galicia [EM 2012/087]

向作者/读者索取更多资源

Cometabolism is the ability of microorganisms to degrade non-growth substrates in the presence of primary substrates, being the main removal mechanism behind the biotransformation of organic micropollutants in wastewater treatment plants. In this paper, a cometabolic Monod-type kinetics, linking biotransformation of micropollutants with primary substrate degradation, was applied to a highly enriched nitrifying activated sludge (NAS) reactor operated under different operational conditions (hydraulic retention time (HRT) and nitrifying activity). A dynamic model of the bioreactor was built taking into account biotransformation, sorption and volatilization. The micropollutant transformation capacity (T-c), the half-saturation constant (K-sc) and the solid liquid partitioning coefficient (K-d) of several organic micropollutants were estimated at 25 degrees C using an optimization algorithm to fit experimental data to the proposed model with the cometabolic Monod-type biotransformation kinetics. The cometabolic Monod-type kinetic model was validated under different HRTs (1.0-3.7 d) and nitrification rates (0.12-0.45 g N/g VSS d), describing more accurately the fate of those compounds affected by the biological activity of nitrifiers (ibuprofen, naproxen, erythromycin and roxithromycin) compared to the commonly applied pseudo-first order micropollutant biotransformation kinetics, which does not link biotransformation of micropollutants to consumption of primary substrate. Furthermore, in contrast to the pseudo-first order biotransformation constant (k(biol)), the proposed cometabolic kinetic coefficients are independent of operational conditions such as the nitrogen loading rate applied. Also, the influence of the kinetic parameters on the biotransformation efficiency of NAS reactors, defined as the relative amount of the total inlet micropollutant load being biotransformed, was assessed considering different HRTs and nitrification rates. (C) 2014 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据