4.8 Article

Occurrence and fate of volatile siloxanes in a municipal Wastewater Treatment Plant of Beijing, China

期刊

WATER RESEARCH
卷 47, 期 2, 页码 715-724

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.watres.2012.10.046

关键词

Volatile siloxanes; SPME/GC-MS; WWTP; Volatilization; Biodegradation; Adsorption

资金

  1. National Natural Science Foundation of China [20837003, 20921063, 20890111]
  2. National Basic Research Program of China [2009CB421605]

向作者/读者索取更多资源

The occurrence and fate of four cyclic and two linear volatile siloxanes were studied in a municipal Wastewater Treatment Plant (WWTP), Beijing City, China. Aqueous and sludge samples were analyzed by solid-phase microextraction (SPME) coupled with gas chromatography mass spectrometry (GC MS). In the studied WWTP, four cyclic analogs (D3-D6) had significantly higher concentrations and frequencies than the two linear analogs [Octamethyltrisiloxane (L3) and Decamethyltetrasiloxane (L4)], with inputs into the WWTP ranging from 78.2 to 387.7 kg/year. Removal efficiencies of volatile cyclic siloxanes in two parallel secondary treatment processes ranged from 59.3 to 92.7%. For volatile cyclic siloxanes, relative fractions of mass loss by adsorption to sludge ranged from 8.3 to 53.0%, and their adsorption capacities were significantly affected by the dissolved organic matter. Besides adsorption, they were eliminated mainly in anaerobic units (44.4-84.3%). Through in vitro biodegradation experiments, we concluded that in the anaerobic compartments, Hexamethylcyclotrisiloxane (D3) and Dodecamethylcyclohexasiloxane (D6) were eliminated mostly by volatilization, while Octamethylcyclotetrasiloxane (D4) and Decamethylcyclopentasiloxane (D5) may be eliminated by both volatilization and degradation. Furthermore, microbe catalysis hydrolysis was identified as one of the main degradation pathways for D4 and D5 in anaerobic compartments. (C) 2012 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据