4.7 Article

Exploration of microRNAs and their targets engaging in the resistance interaction between wheat and stripe rust

期刊

FRONTIERS IN PLANT SCIENCE
卷 6, 期 -, 页码 -

出版社

FRONTIERS RESEARCH FOUNDATION
DOI: 10.3389/fpls.2015.00469

关键词

plant resistance; degradome sequencing; microRNA; Puccinia striiformis f. sp tritici; wheat

资金

  1. National Basic Research Program of China [2013CB127700]
  2. National Science & Technology Pillar Program during the Twelfth 5-year Plan Period [2012BAD19B04]
  3. National Natural Science Foundation of China [31271990]
  4. Youth Science & technology star of Shaanxi [2012KJXX-15]
  5. 111 Project from the Ministry of Education of China [B07049]

向作者/读者索取更多资源

Wheat stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most destructive diseases of wheat worldwide. miRNAs are important regulators, they play very central roles in plant organ development, vegetable phase change and defense responses. In this study, two miRNA libraries from wheat cultivar Xingzi 9104 (XZ) challenged with the avirulent Pst race CYR32 and sterile water were constructed, respectively. A total of 596 miRNA candidates were obtained. 420 wheat-specific candidate miRNAs were screened in adult plants challenged with Pst using microarray-based analyses. We analyzed the abundance of candidate miRNAs, and the levels of a subset of candidate miRNAs were determined by quantitative real time PCR (qRT-PCR). The qRT-PCR results indicated that some miRNAs were involved in the incompatible interaction between wheat and Pst. In addition, we identified some miRNAs differentially expressed in different leaves. Additionally, the target genes of wheat miRNAs were confirmed by using degradome sequencing technology. Most of the annotated target genes are related to signal transduction, energy metabolism, and other functions. We selected some target genes for relative expression analysis using qRT-PCR, and found that RabGAP/TBC domain-containing protein, zinc finger protein and Cysteine-rich receptor-like protein kinase 41 may play important role in the incompatible interaction between XZ and CYR32. Intriguingly, miRNAs and target gene seem to form a complicated regulation network that regulates the wheat-Pst interaction. Our data provide the foundation for evaluating the important regulatory roles of miRNAs in the wheat-Pst interaction.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据