4.8 Article

Improving on SUVA254 using fluorescence-PARAFAC analysis and asymmetric flow-field flow fractionation for assessing disinfection byproduct formation and control

期刊

WATER RESEARCH
卷 46, 期 9, 页码 2927-2936

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.watres.2012.03.002

关键词

Enhanced coagulation; Dissolved organic matter; Chloroform; Drinking water; pH effects

资金

  1. UA
  2. Doctoral Academy (UA)

向作者/读者索取更多资源

Several challenges with disinfection byproduct (DBP) control stem from the complexity and diversity of dissolved organic matter (DOM), which is ubiquitous in natural waters and reacts with disinfectants to form DBPs. Fluorescence parallel factor (PARAFAC) analysis and asymmetric flow-field flow fractionation (AF4) were used in combination with free chlorine DBP formation potential (DBPFP) tests to study the physicochemical DOM properties and DBP formation in raw- and alum-coagulated waters. Enhanced coagulation with alum became more effective at removing DBP-precursors as the pH decreased from 8 to 6. AF4-UV254 fractograms indicated enhanced coagulation at pH 6 preferentially removed larger DOM, whereas no preferential size removal occurred at pH 8. Fluorescence-PARAFAC analysis revealed the presence of one protein-like and three humic-like fluorophore groups; stronger linear correlations were found between chloroform and the maximum intensity (F-MAX) of a humic-like fluorophore (r(2) = 0.84) than with SUVA(254) (r(2) = 0.51). This result indicated that the fluorescence-PARAFAC approach used here was an improvement on SUVA(254), i.e., fluorescence-based measurements were stronger predictors of chloroform formation. (C) 2012 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据