4.8 Article

Morphological architecture of dual-layer hollow fiber for membrane distillation with higher desalination performance

期刊

WATER RESEARCH
卷 45, 期 17, 页码 5489-5500

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.watres.2011.08.012

关键词

Membrane distillation; Uniform finger-like macrovoids; Fully sponge-like structure; Liquid entry pressure; Heat and mass transfer model

资金

  1. A*STAR
  2. National University of Singapore [R-279-000-291-305]

向作者/读者索取更多资源

A new strategy to enhance the desalination performance of polyvinylidene fluoride (PVDF) hollow fiber membrane for membrane distillation (MD) via architecture of morphological characteristics is explored in this study. It is proposed that a dual-layer hollow fiber consisting of a fully finger-like macrovoid inner-layer and a sponge-like outer-layer may effectively enhance the permeation flux while maintaining the wetting resistance. Dual-layer fibers with the proposed morphology have been fabricated by the dry-jet wet spinning process via careful choice of dopes composition and coagulation conditions. In addition to high energy efficiency (EE) of 94%, a superior flux of 98.6 L m(-2) h(-1) is obtained during the direct contact membrane distillation (DCMD) desalination experiments. Moreover, the liquid entry pressure (LEP) and long-term DCMD performance test show high wetting resistance and long-term stability. Mathematical modeling has been conducted to investigate the membrane mass transfer properties in terms of temperature profile and apparent diffusivity of the membranes. It is concluded that the enhancement in permeation flux arises from the coupling effect of two mechanisms; namely, a higher driving force and a lower mass transfer resistance, while the later is the major contribution. This work provides an insight on MD fundamentals and strategy to tailor making ideal membranes for DCMD application in desalination industry. (C) 2011 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据