4.8 Article

Effect of temperature shocks on membrane fouling in membrane bioreactors

期刊

WATER RESEARCH
卷 45, 期 15, 页码 4491-4500

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.watres.2011.05.046

关键词

Membrane fouling; Temperature; Membrane bioreactor; Particle size; Flux step method; Polysaccharides; Fouling mechanisms

资金

  1. Dutch Ministry of Economic Affairs
  2. European Union
  3. Province of Fryslan
  4. City of Leeuwarden
  5. EZ/Kompas program of the 'Samenwerkingsverband Noord-Nederland

向作者/读者索取更多资源

Temperature is known to influence the biological performance of conventional activated sludge systems. In membrane bioreactors (MBRs), temperature not only affects the bioconversion process but is also shown to have an effect on the membrane performance. Four phenomena are generally reported to explain the higher resistance for membrane filtration found at lower temperatures: (1) increased mixed liquor viscosity, reducing the shear stress generated by coarse bubbles, (2) intensified deflocculation, reducing biomass floc size and releasing EPS into the mixed liquor, (3) lower backtransport velocity and (4) reduced biodegradation of COD. Although the higher resistance at low temperatures has been reported in several papers, the relation with supernatant composition has not been investigated before. In this paper, the composition of the soluble fraction of the mixed liquor is related to membrane performance after exposing the sludge to temperature shocks. Flux step experiments were performed in an experimental system at 7, 15, and 25 Celsius with sludge that was continuously recirculated from a pilot-scale MBR. After correcting the permeate viscosity for temperature, higher membrane fouling rates were obtained for the lower temperature in combination with low fouling reversibility. The soluble fraction of the MBR mixed liquor was analysed for polysaccharides, proteins and submicron particle size distribution. At low temperature, a high polysaccharide concentration was found in the experimental system as compared to the MBR pilot. Upon decreasing the temperature of the mixed liquor, a shift was found in particle size towards smaller particles. These results show that the release of polysaccharides and/or submicron particles from sludge flocs could explain the increased membrane fouling at low temperatures. (C) 2011 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据