4.8 Article

Direct and indirect photolysis of sulfamethoxazole and trimethoprim in wastewater treatment plant effluent

期刊

WATER RESEARCH
卷 45, 期 3, 页码 1280-1286

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.watres.2010.10.005

关键词

Pharmaceuticals; Photolysis; Wastewater; Dissolved oxygen; Triplet organic matter; Nitrate

资金

  1. Minnesota Environment and Natural Resources Trust

向作者/读者索取更多资源

The photolysis of two antibacterial compounds, sulfamethoxazole and trimethoprim, was studied in wastewater effluent. The rate of loss of sulfamethoxazole was enhanced in wastewater effluent due to indirect photolysis reactions, specifically reactions with hydroxyl radicals and triplet excited state effluent organic matter. Photolysis in the presence of natural organic matter, however, did not lead to enhanced degradation of sulfamethoxazole. Trimethoprim was also found to be susceptible to indirect photolysis in wastewater effluents, with hydroxyl radical and triplet excited effluent organic matter being the responsible species. Deoxygenation of solutions led to more rapid direct photolysis of sulfamethoxazole and trimethoprim, indicating that direct photolysis proceeds through a triplet excited state, which was verified by demonstrating that trimethoprim is a singlet oxygen sensitizer. In the wastewater effluents tested, photolysis could be apportioned into direct photolysis (48% for sulfamethoxazole, 18% for trimethoprim), reaction with hydroxyl radicals (36% and 62%, respectively) and reaction with triplet excited effluent organic matter (16% and 20%, respectively). These results indicate that allowing photolysis in wastewater stabilization ponds or wastewater treatment wetlands may lead to enhanced pharmaceutical removal prior to discharge and that effluent organic matter has different photoreactivity than natural organic matter. (C) 2010 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据