4.8 Article

The role of nitrobenzene on the yield of trihalomethane formation potential in aqueous solutions with Microcystis aeruginosa

期刊

WATER RESEARCH
卷 45, 期 19, 页码 6489-6495

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.watres.2011.09.043

关键词

Microcystis aeruginosa; THMFP; Nitrobenzene

资金

  1. National Creative Research Groups [50821002]
  2. National Natural Science Foundation of China [50778048]

向作者/读者索取更多资源

Algae are one of the most important disinfection by-product (DBP) precursors in aquatic environments. The contents of DBP precursors in algae are influenced by not only environmental factors but also some xenobiotics. Trihalomethane formation potential (THMFP) in both the separate and interactive pollution of Microcystis aeruginosa and Nitrobenzene (NB) was investigated in batch experiment to discover the effects of xenobiotics on the yield of DBP precursors in the algal solution. The results show that in the separate NB solution, NB did not react with Cl-2 to form trihalomethane (THM), whereas in the algae solution, THMFP had a significant positive linear correlation with M. aeruginosa density in both solution and extracellular organic matter (EOM). The correlation coefficients were 0.9845 ( p = 3.567 x 10(-4)) and 0.9854 (p = 1.406 x 10(-4)), respectively. According to regression results, about 77.9% of the total THMFP came from the algal cells, while the rest came from EOM. When the interactive pollution of M. aeruginosa and NB occurred, the growth of algae was inhibited by NB. The density of M. aeruginosa in a high concentration NB solution (280 mu g/L) was only 71.1% of that in the solution without NB after 5 days of incubation. However, THMFP in the mixture (algae and NB) and the EOM did not change significantly, and the productivity of THMFP by the algae (THMFP/10(8)cells) increased with the increase in NB concentration. There was a significant linear correlation between THMFP/10(8)cell and NB concentration (r = 0.9117, p < 0.01), which shows the contribution of the algae to THM formation was enhanced by NB. This result might be caused by the increased protein productivity and the biodegradation of NB by M. aeruginosa. (C) 2011 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据