4.8 Article

Bicarbonate-form anion exchange: Affinity, regeneration, and stoichiometry

期刊

WATER RESEARCH
卷 45, 期 3, 页码 1329-1337

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.watres.2010.10.018

关键词

Carbon dioxide; Magnetic ion exchange; Natural organic matter; Bicarbonate; Nitrate; Sulfate

资金

  1. Occidental Chemical Research Award

向作者/读者索取更多资源

Magnetic ion exchange (MIEX) is an effective process for removing dissolved organic carbon (DOC) from natural waters, but its implementation has been limited due to production of waste sodium chloride solution (i.e., brine) from the regeneration process. Chloride is of concern because elevated concentrations can have adverse effects on engineered and natural systems. The goal of this research was to explore the efficacy of using anion exchange resin with bicarbonate as the mobile counter ion, which would produce a non-chloride regeneration solution. It was found that bicarbonate-form MIEX resin had a similar affinity as chloride-form MIEX resin for sulfate, nitrate, DOC, and ultraviolet-absorbing substances. Both bicarbonate-form and chloride-form MIEX resins showed the greatest removal efficiencies as fresh resin, and removal efficiency decreased with multiple regeneration cycles. Nevertheless, sodium bicarbonate solution was as effective as sodium chloride solution at regenerating MIEX resin. Regeneration of the bicarbonate-form MIEX resin was illustrated by sparging carbon dioxide gas in a water/resin slurry. This regeneration process would eliminate the need for the addition of salts such as sodium chloride or sodium bicarbonate. The stoichiometry of the bicarbonate-form resin revealed that the bicarbonate was deprotonating within the resin matrix leading to a mixture of both carbonate and bicarbonate mobile counter ions. This work makes an important contribution to ion exchange applications for water treatment by evaluating the affinity, regeneration, and stoichiometry of bicarbonate-form anion exchange. (C) 2010 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据