4.8 Article

Occurrence and loss over three years of 72 pharmaceuticals and personal care products from biosolids-soil mixtures in outdoor mesocosms

期刊

WATER RESEARCH
卷 44, 期 20, 页码 6011-6020

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.watres.2010.07.051

关键词

Municipal sludge; Land application; PPCPs; Half-life; Persistence; Bioavailability

资金

  1. National Institute of Environmental Health Sciences NIEHS [1R01ES015445]
  2. Johns Hopkins University Center for a Livable Future

向作者/读者索取更多资源

Municipal biosolids are in widespread use as additives to agricultural soils in the United States. Although it is well known that digested sewage sludge is laden with organic wastewater contaminants, the fate and behavior of micropollutants in biosolids-amended agricultural soils remain unclear. An outdoor mesocosm study was conducted in Baltimore, Maryland, to explore the fate of 72 pharmaceuticals and personal care products (PPCPs) over the course of three years in that were placed in plastic containers made from polyvinylchloride and kept exposed to ambient outdoor conditions. Of the 72 PPCPs tested for using EPA Method 1694, 15 were initially detected in the soil/biosolids mixtures at concentrations ranging from low parts-per-billion to parts-per-million levels. The anti-microbials triclocarban and triclosan showed the highest initial concentrations at 2715 and 1265 mu g kg(-1), respectively. Compounds showing no discernable loss over three years of monitoring included diphenhydramine, fluoxetine, thiabendazole and triclocarban. The following half-life estimates were obtained for compounds showing first-order loss rates: azithromycin (408-990 d) carbamazepine (462-533 d), ciprofloxacin (1155-3466 d), doxycycline (533-578 d), 4-epitetracycline (630 d), gemfibrozil (224-231 d), norfloxacin (990-1386 d), tetracycline (578 d), and triclosan (182-193 d). Consistent with other outdoor degradation studies, chemical half-lives determined empirically exceeded those reported from laboratory studies or predicted from fate models. Study results suggest that PPCPs shown in the laboratory to be readily biotransformable can persist in soils for extended periods of time when applied in biosolids. This study provides the first experimental data on the persistence in biosolids-amended soils for ciprofloxacin, diphenhydramine, doxycycline, 4-epitetracycline, gemfibrozil, miconazole, norfloxacin, ofloxacin, and thiabendazole. (C) 2010 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据