4.8 Article

Oxidation of organics in retentates from reverse osmosis wastewater reuse facilities

期刊

WATER RESEARCH
卷 43, 期 16, 页码 3992-3998

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.watres.2009.04.010

关键词

Advanced oxidation process; Dissolved organic matter; Pharmaceutical; Ultraviolet; Ozone; Hydroxyl radical

资金

  1. WateReuse Foundation Project [05-10]

向作者/读者索取更多资源

The use of membrane processes for wastewater treatment and reuse is rapidly expanding. organic, inorganic, and biological constituents are effectively removed by reverse osmosis (RO) membrane processes, but concentrate in membrane retentates Disposal of membrane concentrates is a growing concern. Applying advanced oxidation processes (AOPs) to RO retentate is logical because extensive treatment and energy inputs were expended to concentrate the organics, and it is cheaper to treat smaller flowstreams. AOPs (e.g., UV irradiation in the presence of titanium dioxide; UV/TiO(2)) can remove a high percentage of organic matter from RO retentates. The combination of AOPs and a simple biological system (e.g., sand filter) can remove higher levels of organic matter at lower UV dosages because AOPs produce biologically degradable material (e.g., organic acids) that have low hydroxyl radical rate constants, meaning that their oxidation, rather than that of the primary organic matter in the RO retentate, dictates the required UV energy inputs. At the highest applied UV dose (10 kWh m(-3)), the dissolved organic carbon (DOC) in the RO retentate decreased from similar to 40 to 8 mg L(-)1, of which approximately 6 mg L(-)1 were readily biologically degradable. Therefore, after combined UV treatment and biodegradation, the final DOC concentration was 2 mg L(-)1, representing a 91% removal. These results suggest that UV/TiO(2) plus biodegradation of RO retentates is feasible and would significantly reduce the organic pollutant loading into the environment from wastewater reuse facilities. (C) 2009 Published by Elsevier Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据