4.8 Article

Modeling the PAO-GAO competition: Effects of carbon source, pH and temperature

期刊

WATER RESEARCH
卷 43, 期 2, 页码 450-462

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.watres.2008.10.032

关键词

Enhanced biological phosphorus removal (EBPR); Metabolic modeling; Microbial competition; Volatile fatty acids (VFA); Poly-beta-hydroxyalkanoates (PHA); Defluviicocccus vanus

向作者/读者索取更多资源

The influence of different carbon sources (acetate to propionate ratios), temperature and pH levels on the competition between polyphosphate- and glycogen-accumulating organisms (PAO and GAO, respectively) was evaluated using a metabolic model that incorporated the carbon source, temperature and pH dependences of these microorganisms. The model satisfactorily described the bacterial activity of PAO (Accumulibacter) and GAO (Competibacter and Alphaproteobacteria-GAO) laboratory-enriched cultures cultivated on propionate (HPr) and acetate (HAc) at standard conditions (20 degrees C and pH 7.0). Using the calibrated model, the effects of different influent HAc to HPr ratios (100-0, 75-25, 50-50 and 0-100%), temperatures (10, 20 and 30 degrees C) and pH levels (6.0, 7.0 and 7.5) on the competition among Accumulibacter, Competibacter and Alphoproteobacteria-GAO were evaluated. The main aim was to assess which conditions were favorable for the existence of PAO and, therefore, beneficial for the biological phosphorus removal process in sewage treatment plants. At low temperature (10 degrees C), PAO were the dominant microorganisms regardless of the used influent carbon source or pH. At moderate temperature (20 degrees C), PAO dominated the competition when HAc and HPr were simultaneously supplied (75-25 and 50-50% HAc to HPr ratios). However, the use of either HAc or HPr as sole carbon source at 20 degrees C was not favorable for PAO unless a high pH was used (7.5). Meanwhile, at higher temperature (30 degrees C), GAO tended to be the dominant microorganisms. Nevertheless, the combined presence of acetate and propionate in the influent (75-25 and 50-50% HAc to HPr ratios) as well as a high pH (7.5) appear to be potential factors to favor the metabolism of PAO over GAO at higher sewage temperature (30 degrees C). (C) 2008 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据