4.0 Article

Heavy Metals Removal by Hydroxide Precipitation and Coagulation-Flocculation Methods from Aqueous Solutions

期刊

WATER QUALITY RESEARCH JOURNAL OF CANADA
卷 44, 期 2, 页码 174-182

出版社

IWA PUBLISHING
DOI: 10.2166/wqrj.2009.019

关键词

precipitation; coagulation-flocculation; heavy metals

资金

  1. Ministry of Science, Technology and Environment Malaysia

向作者/读者索取更多资源

The hydroxide precipitation and coagulation-flocculation methods were used to treat wastewater containing lead, zinc, copper, and iron. The concentrations of heavy metals in the synthetic wastewater range from 1 to 14 mg/L for lead, 5 to 90 mg/L for zinc, 3 to 90 mg/L for copper and 5 to 45 mg/L for iron. Individual Zn(II) and Cu(II) with concentrations below 90 mg/L and Fe(III) with concentrations below 45 mg/L were removed up to 99% by the precipitation method in the pH range of 8.7 to 9.6, 8.1 to 11.1, and 6.2 to 7.1, respectively. Though the highest percent removal of Pb(II) by hydroxide precipitation alone was approximately 98%, the final dissolved concentrations did not fulfill the Standard A discharge limit required by the regulations, thus further treatment by the coagulation-flocculation process was performed. Aluminum sulphate (alum), polyaluminum chloride (PACl) and magnesium chloride (MgCl2) have been used as coagulants together with Koaret PA 3230 as coagulant aid to determine the effectiveness of the coagulation method for the removal of individual heavy metals in the wastewater. The effects of parameters such as pH, type, and dosage of coagulant on the percentage of metal removal, and the amount of coagulant aid on the flocs settling time were investigated. The jar test showed that up to 99% removal of Pb(II) was attained by the addition of 1,200 mg/L of alum, 150 mg/L of PACl, and 2,000 mg/L of MgCl2 in a pH range of 6.5 to 7.8, 8.1 to 8.9, and 9.7 to 10.9, respectively.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.0
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据