4.6 Article

Remediation of Diesel-Contaminated Soils Using Persulfate Under Alkaline Condition

期刊

WATER AIR AND SOIL POLLUTION
卷 223, 期 7, 页码 4605-4614

出版社

SPRINGER INTERNATIONAL PUBLISHING AG
DOI: 10.1007/s11270-012-1221-6

关键词

Soil contamination; Lime; Persulfate activation; Total petroleum hydrocarbon

向作者/读者索取更多资源

A laboratory study was conducted to assess the feasibility of remediating diesel-contaminated soils using sodium persulfate (SPS) oxidation under an alkaline pH. Lime (CaO) and sodium hydroxide (NaOH) were used as the alkaline sources, and various factors, including temperature, reaction time and concentration level, were investigated. Moreover, the combined usage of hydrogen peroxide (HP) and SPS in the presence or absence of NaOH was also studied. It was found that lime hydration resulted in rapid increases in pH (> 12) and temperature (75 A degrees C maximum) at a CaO/H2O mass ratio of 3/20. In the NaOH or CaO/SPS system, the maximum diesel degradation achieved was approximately 30 %. It was observed that using a larger amount of alkaline increased SPS decomposition and had almost no effect on diesel degradation. Limited solubilization of contaminants may have inhibited the effectiveness of alkaline-activated persulfate oxidation during the aqueous phase and hence resulted in incomplete diesel degradation. The highest rate of diesel degradation (i.e., 56 % in 7 days) was achieved using the dual oxidation system, in which a HP/SPS molar ratio of 3.3/0.5 was used. An aggressive oxidation process, coupled with HP, may enhance desorption of diesel from soils and allow oxidation to occur during the aqueous phase.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据