4.6 Article

Application of Polymath Chemical Equilibrium Simulation Model for Struvite Precipitation in Soils

期刊

WATER AIR AND SOIL POLLUTION
卷 223, 期 5, 页码 1995-2005

出版社

SPRINGER INTERNATIONAL PUBLISHING AG
DOI: 10.1007/s11270-011-1000-9

关键词

Struvite; Manure-impacted soil; Phosphorus; Chemical equilibrium modeling

向作者/读者索取更多资源

A new speciation model developed and implemented in Polymath was found to be successful in predicting struvite precipitation in soils. Struvite (NH4MgPO4) has been identified as a mineral for the recovery of nitrogen (N) and phosphorus (P). Predicting struvite precipitation potential in soil is important for optimal quantification of nutrient species. Polymath and Visual Minteq models were used for prediction of several solid phases in the soil. One approach to immobilize P for solid-phase formation is by co-blending. Immobilization was achieved through the blending of an Al-based water treatment residual (Al-WTR) and with Ca-Mg-based materials [slag and magnesium oxide (MgO)]. The results suggest that Polymath model revealed solid Phases of dicalcium phosphate pentahydrate (DCPP), magnesium hydroxide (MHO), magnesium orthophosphate (v) docosahydrate (MP22), magnesium orthophosphate (v) octahydrate (MP8), and struvite, which were lacking in the modeling from Visual Minteq. Residual leachate from the co-blended amendments; Soil+WTR+Slag, Soil+WTR+MgO, Soil+MgO, Soil+Slag, Soil+WTR, and the control (without amendment) had struvite of 353, 199, 119, 90, 37, and 12 mg l(-1), respectively. This implies that struvite, a phosphate mineral can be precipitated in the soil and could be released as nutrients for plant uptake. Struvite precipitation in soil and for reuse may reduce cost and may be a safe practice for sustainable environmental nutrient management.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据