4.7 Article

Chemical and microscopic investigation of co-pyrolysis of crumb tire rubber with waste cooking oil at mild temperature

期刊

WASTE MANAGEMENT
卷 79, 期 -, 页码 516-525

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.wasman.2018.08.024

关键词

Crumb tire rubber; Waste cooking oil; Co-pyrolysis; Structural change; Microscopic investigation

资金

  1. National Natural Science Foundation of China [51578097]
  2. National International ST Cooperation [2013DFR50550]

向作者/读者索取更多资源

Approximate rubber/bitumen homogeneous system formed by desulfurization and degradation of crumb tire rubber in bitumen under high temperature is beneficial to enhance the storage stability of rubberized bitumen. However, the main problems during the processing of desulfurized and degraded rubberized bitumen are aging caused by volatilization of light components, and burning or explosion due to the direct utilization of low flash point bitumen. Therefore, waste cooking oil was proposed as a safer medium to desulfurize and degrade crumb rubber prior to production of rubberized bitumen. This study focused on the feasibility and effectiveness of the application of waste cooking oil in desulfurizing and degrading rubber particles through co-pyrolysis of them at mild temperature (240-280 degrees C). Chemical and microscopic analyses were performed to investigate the structural changes of vulcanized rubber. Results showed that solubility of rubber powder reached above 60 wt% after pyrolysis in waste cooking oil, which increased with higher temperatures and more of oil, while increased to a maximum at 2 h and then decreased with the extension of time. The rubber hydrocarbon content decreased greatly, and dramatic reduction of carbon, hydrogen and sulfur elements happened according to component and elemental analyses. The surface of pyrolysis product was even and smooth without obvious rubber particles. The grooves and cavities of rubber residues in scanning electron microscopy micrographs proved that shedding of degraded polymer molecules occurred. Fourier transform infrared spectra revealed that breakage of carbon-sulfur, carbon=carbon and sulfur=oxygen bonds took place during pyrolysis, with appearance of natural rubber characteristic peak. (C) 2018 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据