4.5 Article

Actin filaments disruption and stabilization affect measles virus maturation by different mechanisms

期刊

VIROLOGY JOURNAL
卷 10, 期 -, 页码 -

出版社

BIOMED CENTRAL LTD
DOI: 10.1186/1743-422X-10-249

关键词

Measles virus; Assembly; Budding; Jasplakinolide; Actin dynamics

类别

资金

  1. German Research Foundation (DFG) [MA 1886/6-1, SFB 593 TP B11]

向作者/读者索取更多资源

Background: Cytoskeletal proteins are often involved in the virus life cycle, either at early steps during virus entry or at later steps during formation of new virus particles. Though actin filaments have been shown to play a role in the production of measles virus (MV), the importance of actin dynamics for virus assembly and budding steps is not known yet. Aim of this work was thus to analyze the distinctive consequences of F-actin stabilization or disruption for MV protein trafficking, particle assembly and virus release. Results: MV infection studies in the presence of inhibitors differently affecting the actin cytoskeleton revealed that not only actin disruption but also stabilization of actin filaments interfered with MV particle release. While overall viral protein synthesis, surface expression levels of the MV glycoproteins, and cell-associated infectivity was not altered, cell-free virus titers were decreased. Interestingly, the underlying mechanisms of interference with late MV maturation steps differed principally after F-actin disruption by Cytochalasin D (CD) and F-actin stabilization by Jasplakinolide (Jaspla). While intact actin filaments were shown to be required for transport of nucleocapsids and matrix proteins (M-RNPs) from inclusions to the plasma membrane, actin dynamics at the cytocortex that are blocked by Jaspla are necessary for final steps in virus assembly, in particular for the formation of viral buds and the pinching-off at the plasma membrane. Supporting our finding that F-actin disruption blocks M-RNP transport to the plasma membrane, cell-to-cell spread of MV infection was enhanced upon CD treatment. Due to the lack of M-glycoprotein-interactions at the cell surface, M-mediated fusion downregulation was hindered and a more rapid syncytia formation was observed. Conclusion: While stable actin filaments are needed for intracellular trafficking of viral RNPs to the plasma membrane, and consequently for assembly at the cell surface and prevention of an overexerted fusion by the viral surface glycoproteins, actin dynamics are required for the final steps of budding at the plasma membrane.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据