4.4 Review

The bovine papillomavirus E5 protein and the PDGF β receptor: It takes two to tango

期刊

VIROLOGY
卷 384, 期 2, 页码 345-351

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.virol.2008.09.033

关键词

Oncogene; Transmembrane protein; Tyrosine kinase; BPV E5

类别

资金

  1. NIH [CA37157]
  2. Yale Skin Cancer SPORE [CA121974]
  3. Northeast Biodefense Center [RCE 15-0183-05]
  4. Anna Fuller Fund

向作者/读者索取更多资源

The extremely hydrophobic, 44-amino acid bovine papillomavirus (BPV) E5 protein is the smallest known oncoprotein, which orchestrates cell transformation by causing ligand-independent activation of a cellular receptor tyrosine kinase, the platelet-derived growth factor beta receptor (PDGF beta R). The E5 protein forms a dimer in transformed cells and is essentially an isolated membrane-spanning segment that binds directly to the transmembrane domain of the PDGF beta R, inducing receptor dimerization, autophosphorylation, and sustained mitogenic signaling. There are few sequence constraints for activity as long as the overall hydrophobicity of the E5 protein and its ability to dimerize are preserved. Nevertheless, the E5 protein is highly specific for the PDGF beta R and does not activate other cellular proteins. Genetic screens of thousands of small, artificial hydrophobic proteins with randomized transmembrane domains inserted into an E5 scaffold identified proteins with diverse transmembrane sequences that activate the PDGF beta R, including some activators as small as 32-amino acids. Analysis of these novel proteins has provided new insight into the requirements for PDGF beta R activation and specific transmembrane recognition in general. These results Suggest that small, transmembrane proteins can be constructed and selected that specifically bind to other cellular or viral transmembrane target proteins. By using this approach, we have isolated a 44-amino acid artificial transmembrane protein that appears to activate the human erythropoietin receptor. Studies of the tiny, hydrophobic BPV E5 protein have not only revealed a novel mechanism of viral oncogenesis, but have also Suggested that it may be possible to develop artificial small proteins that specifically modulate much larger target proteins by acting within cellular or viral membranes. (C) 2008 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据