4.5 Article

Microbial electrolysis cell accelerates phosphate remobilisation from iron phosphate contained in sewage sludge

期刊

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c4em00536h

关键词

-

资金

  1. Swiss Federal Office for the Environment (FOEN)
  2. WWTP Worblental
  3. Lonza Ltd.
  4. WWTP Sion
  5. fenaco
  6. Saia-Burgess Controls AG
  7. HES-SO Valais

向作者/读者索取更多资源

Phosphate was remobilised from iron phosphate contained in digested sewage sludge using a bio-electric cell. A significant acceleration above former results was caused by strongly basic catholytes. For these experiments a dual chambered microbial electrolysis cell with a small cathode (40 mL) and an 80 times larger anode (2.5 L) was equipped with a platinum sputtered reticulated vitreous carbon cathode. Various applied voltages (0.2-6.0 V) generated moderate to strongly basic catholytes using artificial waste water with pH close to neutral. Phosphate from iron phosphate contained in digested sewage sludge was remobilised most effectively at pH similar to 13 with up to 95% yield. Beside minor electrochemical reduction, hydroxyl substitution was the dominating remobilisation mechanism. Particle-fluid kinetics using the shrinking core model allowed us to determine the reaction controlling step. Reaction rates changed with temperature (15-40 degrees C) and an activation energy of E-a = 55 kJ mol(-1) was found. These analyses indicated chemical and physical reaction control, which is of interest for future scale-up work. Phosphate remobilisation rates increased significantly, yields doubled and recovered PO43- concentrations increased four times using a task specific bio-electric system. The result is a sustainable process for decentralized phosphate mining and a green chemical base generator useful also for many other sustainable processing needs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据