4.8 Article

Perturbation biology nominates upstream-downstream drug combinations in RAF inhibitor resistant melanoma cells

期刊

ELIFE
卷 4, 期 -, 页码 -

出版社

ELIFE SCIENCES PUBLICATIONS LTD
DOI: 10.7554/eLife.04640

关键词

-

类别

资金

  1. National Institutes of Health (NIH), The National Resource for Network Biology grant [GM 103504]
  2. National Human Genome Research Institute (NHGRI), The Research Resource for Biological Pathways grant [U41 HG006623]
  3. Melanoma Research Alliance (MRA), Established Investigator Award
  4. National Institutes of Health (NIH), Center for Cancer Systems Biology grant [U54 CA148967]

向作者/读者索取更多资源

Resistance to targeted cancer therapies is an important clinical problem. The discovery of anti-resistance drug combinations is challenging as resistance can arise by diverse escape mechanisms. To address this challenge, we improved and applied the experimental-computational perturbation biology method. Using statistical inference, we build network models from high-throughput measurements of molecular and phenotypic responses to combinatorial targeted perturbations. The models are computationally executed to predict the effects of thousands of untested perturbations. In RAF-inhibitor resistant melanoma cells, we measured 143 proteomic/phenotypic entities under 89 perturbation conditions and predicted c-Myc as an effective therapeutic co-target with BRAF or MEK. Experiments using the BET bromodomain inhibitor JQ1 affecting the level of c-Myc protein and protein kinase inhibitors targeting the ERK pathway confirmed the prediction. In conclusion, we propose an anti-cancer strategy of co-targeting a specific upstream alteration and a general downstream point of vulnerability to prevent or overcome resistance to targeted drugs. DOI: 10.7554/eLife.04640.001

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据