4.4 Article

3D-Printing of Redox Flow Batteries for Energy Storage: A Rapid Prototype Laboratory Cell

期刊

出版社

ELECTROCHEMICAL SOC INC
DOI: 10.1149/2.0141504jss

关键词

-

资金

  1. Mexican government through CONACYT
  2. SEP overseas scholarships

向作者/读者索取更多资源

Although interest in redox flow batteries (RFBs) for energy storage has grown over the last few years, implementation of RFB technology has been slow and challenging. Recent developments in 3D-printing of materials enable a transforming technology for fast, reproducible and documented cell manufacture. This technology can give an improved engineering approach to cell design and fabrication, needed to fulfil requirements for lower cost, longer lifetime hardware capable of efficient reliable performance. It can also be used to implement a flexible design methodology to suit various scales of operation, usually important during RFB development. In the case of electrolyte flow features, these needs are especially well met by fast prototyping strategies. This paper demonstrates the importance of 3D-printing for the realization of a hybrid zinc-cerium RFB laboratory cell. The design and fabrication process is described and the benefits offered by 3D-printing are considered. Finally, further opportunities offered by this approach to RFB manufacture and research are highlighted. (C) The Author(s) 2015. Published by ECS.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据