4.3 Article Proceedings Paper

FIV Gag: Virus assembly and host-cell interactions

期刊

VETERINARY IMMUNOLOGY AND IMMUNOPATHOLOGY
卷 134, 期 1-2, 页码 3-13

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.vetimm.2009.10.003

关键词

FIV; HIV-1; Gag; Viral late domains; ESCRT; Virus-cell interactions

资金

  1. Intramural NIH HHS [Z01 BC010776-01] Funding Source: Medline

向作者/读者索取更多资源

Infection of domestic cats with virulent strains of the feline immunodeficiency virus (FIV) leads to an acquired immunodeficiency syndrome (AIDS), similar to the pathogenesis induced in humans by infection with human immunodeficiency virus type I (HIV-1). Thus, FIV is a highly relevant model for anti-HIV therapy and vaccine development. FIV is not infectious in humans, so it is also a potentially effective non-toxic gene therapy vector. To make better use of this model, it is important to define the cellular machinery utilized by each virus to produce virus particles so that relevant similarities can be identified. It is well understood that all replication-competent retroviruses encode gag, pol, and env genes, which provide core elements for virus replication. As a result, most antiretroviral therapy targets pol-derived enzymes (protease, reverse transcriptase, and integrase) or env-derived glycoproteins that mediate virus attachment and entry. However, resistance to drugs against these targets is a persistent problem, and novel targets must be identified to produce more effective drugs that can either substitute or be combined with current therapy. Elements of the gag gene (matrix, capsid, nucleocapsid, and late domains) have yet to be exploited as antiviral targets, even though the Gag precursor polyprotein is self-sufficient for the assembly and release of virus particles from cells. This process is far better understood in primate lentiviruses, especially HIV-1. However, there has been significant progress in recent years in defining how FIV Gag is targeted to the cellular plasma membrane, assembles into virions, incorporates FIV Env glycoproteins, and utilizes host cell machinery to complete virus release. Recent discoveries of intracellular restriction factors that target HIV-1 and FIV capsids after virus entry have also opened exciting new areas of research. This review summarizes currently known interactions involving HIV-1 and FIV Gag that affect virus release, infectivity, and replication. Published by Elsevier B.V.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据