4.5 Article

New Local Thresholding Method for Soil Images by Minimizing Grayscale Intra-Class Variance

期刊

VADOSE ZONE JOURNAL
卷 12, 期 3, 页码 -

出版社

SOIL SCI SOC AMER
DOI: 10.2136/vzj2012.0172

关键词

-

向作者/读者索取更多资源

Recent advances in imaging techniques offer the possibility of visualizing the three-dimensional structure of soils at very fine scales. To make use of such information, a thresholding process is commonly implemented to separate the image into solid particles and pores. Despite the multitude of thresholding algorithms available, their performance is being challenged by the complexity of the soil structure. Experience shows that, to improve thresholding performance, existing methods require significant input from a skilled operator, making the thresholding subjective. In this context, this article proposes a new, operator-independent thresholding technique based on the analysis of the intraclass grayscale variance. The method extends the well-established Otsu technique, by applying first a preclassification of the voxels corresponding to the solid phase. Then, a threshold value is determined through minimization of the intraclass variance of the unclassified voxels. The method was implemented globally, then locally for a range of window sizes, with the optimal window size selected as that for which the standardized grayscale variances of the two voxel populations are equal. Results on the three-dimensional soil images investigated suggest that the proposed method performs noticeably better than Otsu's method, and in particular is robust enough to variations in image contrast and soil structure. Tested on a synthetic image, the new method produces a misclassification of only 2% of voxels, compared to 4.9% with Otsu's method. These results suggest that the proposed method can be very useful in the analysis of images of a variety of heterogeneous media, including soils.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据