4.5 Article

Protein-energy malnutrition alters IgA responses to rotavirus vaccination and infection but does not impair vaccine efficacy in mice

期刊

VACCINE
卷 32, 期 1, 页码 48-53

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.vaccine.2013.10.072

关键词

Rotavirus; Malnutrition; Tropical barrier; Rhesus rotavirus; Epizootic diarrhea of infant mice; Environmental enteropathy

资金

  1. Bill & Melinda Gates Foundation
  2. Fogarty International Center/NIH [OPP1046564, K02 TW008767]
  3. Cincinnati Children's Research Foundation
  4. Bill and Melinda Gates Foundation [OPP1046564] Funding Source: Bill and Melinda Gates Foundation

向作者/读者索取更多资源

Background: Conflicting evidence links malnutrition to the reduced efficacy of rotavirus vaccines in developing countries, where diarrhea and undernutrition remain leading causes of child deaths. Here, we adapted mouse models of rotavirus vaccination (rhesus rotavirus, RRV), rotavirus infection (EDIM), and protein-energy malnutrition (PEM) to test the hypothesis that undernutrition reduces rotavirus vaccine immunogenicity and efficacy. Methods: We randomized wild type Balb/C dams with 3-day-old pups to a control diet (CD) or an isocaloric, multideficient regional basic diet (RBD) that produces PEM. At 3 weeks of age, we weaned CD and RBD pups to their dams' diet and subrandomized weanlings to receive a single dose of either live oral rotavirus vaccine (REV) or PBS. At 6 weeks of age, we orally challenged all groups with murine rotavirus (EDIM). Serum and stool specimens were collected before and after RRV and EDIM administration to measure viral shedding and antibody responses by ELISA. Results: RBD pups and weanlings exhibited significant failure to thrive compared to age-matched CD mice (P<.0001). RRV vaccination induced higher levels of serum anti-RV IgA responses in RBD vs. CD mice (P<.0001). Vaccination protected CD and RBD mice equally against EDIM infection, as measured by viral shedding. In unvaccinated RBD mice, EDIM shedding peaked 1 day earlier (P<.05), however we detected no effects of undernutrition on viral clearance nor of infection on bodyweight. EDIM infection provoked higher anti-RV serum IgA levels in RBD vs. CD mice, regardless of vaccination (P<.0001). Last, RRV vaccination mitigated stool IgA responses to EDIM more in CD vs. RBD mice (P<.0001). Conclusions: Despite modulated IgA responses to vaccination and infection, undernutrition does not impair rotavirus vaccine efficacy nor exacerbate infection in this mouse model of protein-energy malnutrition. Alternative models are needed to elucidate host-pathogen factors undermining rotavirus vaccine effectiveness in high-risk global settings. (C) 2013 The Authors. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据