4.5 Article

Consecutive CT in vivo lung imaging as quantitative parameter of influenza vaccine efficacy in the ferret model

期刊

VACCINE
卷 30, 期 51, 页码 7391-7394

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.vaccine.2012.10.008

关键词

Influenza; Preclinical vaccine efficacy; Ferret; In vivo imaging; CT scan; Pathology

向作者/读者索取更多资源

Preclinical vaccine efficacy studies are generally limited to certain read out parameters such as assessment of virus titers in swabs and organs, clinical signs, serum antibody titers, and pathological changes. These parameters are not always routinely applied and not always scheduled in a logical standardized way. We used computed tomography (CT) imaging as additional and novel read out parameter in a vaccine efficacy study by quantifying alterations in aerated lung volumes in ferrets challenged with the 2009 pandemic A/H1N1 influenza virus. Vaccination protected from marked variations in aerated lung volumes compared to naive controls. The vaccinated group showed a daily gradual mean reduction with a maximum of 7.8%, whereas the controls showed a maximum of 143% reduction. The pulmonary opacities evident on CT images were most pronounced in the placebo-treated controls, and corresponded to significantly increased relative lung weights at necropsy. This study shows that consecutive in vivo CT imaging allows for a day to day read out of vaccine efficacy by quantification of altered aerated lung volumes. (C) 2012 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据