4.5 Article

Codon stabilization analysis of the 248 temperature sensitive mutation for increased phenotypic stability of respiratory syncytial virus vaccine candidates

期刊

VACCINE
卷 27, 期 41, 页码 5667-5676

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.vaccine.2009.07.022

关键词

Pneumovirus; Respiratory syncytial virus vaccine; Temperature sensitive

资金

  1. MedImmune, Inc., Gaithersburg
  2. NIAID, NIH

向作者/读者索取更多资源

Human respiratory syncytial virus (RSV) is the most important viral agent of serious pediatric respiratory tract illness worldwide. Presently, the most promising vaccine candidate is a live, attenuated, cDNA-derived virus, RSV rA2cp248/404/1030 Delta SH, whose attenuation phenotype is based in large part on a series of point mutations including a glutamine to leucine (Q to L) substitution at amino acid residue 831 of the polymerase protein 1, a mutation originally called 248. This mutation specifies both a temperature sensitive (ts) and attenuation phenotype. Reversion of this mutation from leucine back to glutamine was detected in some samples in clinical phase 1 trials. To identify the most genetically stable attenuating codon at this position to be included in a more stable RSV vaccine, we sought to create and evaluate recombinant RSVs representing all 20 possible amino acid assignments at this position, as well as small insertions and deletions. The recoverable viruses constituted a panel representing 18 different amino acid assignments, and were evaluated for temperature sensitivity in vitro and attenuation in mice. The original leucine mutation was found to be the most attenuating, followed only by phenylalanine. The paucity of highly attenuating assignments limited the possibility of increasing genetic stability. Indeed, it was not possible to find a leucine or phenylalanine codon requiring more than a single nucleotide change to yield a non-attenuating codon, as is necessary for the stabilization strategy. Nonetheless, serial passage of the six possible leucine codons in vitro at increasing temperatures revealed differences, with slower reversion to non-attenuated phenotypes for a subset of codons. Thus, it should be possible to modestly increase the phenotypic stability of the rA2cp248/404/1030 Delta SH vaccine virus by codon modification at the locus of the 248 mutation. In addition to characterizing the phenotypes associated with a particular locus in the RSV L protein, this manuscript provides insight into the problem of the instability of point mutations and the limitations of strategies to stabilize them. Published by Elsevier Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据