4.4 Article

Effect of Silencing VDR Gene in Kidney on Renal Epithelial Calcium Transporter Proteins and Urinary Calcium Excretion in Genetic Hypercalciuric Stone-forming Rats

期刊

UROLOGY
卷 78, 期 6, 页码 -

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.urology.2011.08.051

关键词

-

资金

  1. National Science Foundation of the People's Republic of China [30672100]

向作者/读者索取更多资源

OBJECTIVE To address the molecular mechanisms that the vitamin D receptor (VDR) in the kidney might contribute to decreased renal calcium reabsorption in idiopathic hypercalciuria using genetic hypercalciuric stone-forming (GHS) rats. METHODS We silenced the VDR gene in the GHS and normal control (NC) rat kidney in vivo using adenovirus vector-delivered microRNA targeting VDR through renal venous transduction. On days 3-21 after injection with adenovirus, the expression levels of the VDR, calcium-sensing receptor, and epithelial calcium transporters in the kidney were detected. The urine calcium and serum calcium, phosphorus, 1,25(OH)(2)D-3, and parathyroid hormone levels were measured. RESULTS The basal expression levels in the kidney tissues of VDR, calbindin-D-28k, and calcium-sensing receptor were significantly greater in the GHS rats than in the NC rats, and the basal expression levels of transient receptor potential vanilloid receptor subtype 5, transient receptor potential vanilloid receptor subtype 6, calbindin-D-9k, and plasma membrane calcium-adenosine triphosphatase were significantly lower in the GHS rats than in the NC rats. VDR knockdown in the kidney caused significant increase in renal transient receptor potential vanilloid receptor subtype 5, sodium/calcium exchanger, and calbindin-D-9k expression levels in the GHS rats. The GHS rats excreted significantly more urine calcium after VDR knockdown. The serum calcium, phosphorus, parathyroid hormone, and 1,25(OH)(2)D-3 levels were not altered during the study period in the GHS and NC rats. CONCLUSION Our findings suggest that VDR knockdown in the kidney can upregulate the expression of transient receptor potential vanilloid receptor subtype 5 in GHS rats. However, VDR depletion results in an increase in urine calcium excretion. The role of VDR in the hypercalciuric formation needs to be elucidated further. UROLOGY 78: 1442.e1-1442.e7, 2011. (C) 2011 Elsevier Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据