4.4 Article

Proteome of Human Calcium Kidney Stones

期刊

UROLOGY
卷 76, 期 4, 页码 -

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.urology.2010.05.005

关键词

-

资金

  1. American Urological Association
  2. Soongsil University

向作者/读者索取更多资源

OBJECTIVES Idiopathic calcium oxalate (CaOx) stones are believed to develop attached to papillary subepithelial deposits called Randall's plaques. Calcium phosphate (CaP) stones, conversely, are thought to arise within the inner medullary collecting ducts, enlarging and damaging surround tubular structures as they expand. If this is true, we theorize that differences will be seen within the organic portion (matrix) of CaOx stones compared with CaP stones using a mass spectroscopy (MS) approach. METHODS From a cohort of 47 powdered stones, 25 calculi (13 CaOx, 12 CaP) were confirmed to contain a dominant mineral content of >80% by powder x-ray diffraction. Matrix proteins were then extracted, purified, and digested. Peptide tandem MS data were acquired, and spectra were searched against a large human protein database to identify protein matches. RESULTS No significant differences were seen between pattern profiles of CaOx and CaP stones. However, variations in protein expression patterns were seen within individual CaOx (monohydrate and dihydrate) and CaP (apatite and brushite) mineral subtypes, suggesting a relationship between crystal-surface binding properties and matrix composition. Both groups contain a large number of inflammatory proteins and a catalog of common proteins is included. CONCLUSIONS Calcium kidney stone matrix contains hundreds of proteins and is predominated by proteins associated with inflammatory response. Many of the same proteins were identified in both CaOx and CaP stones, suggesting inflammation as a unifying origin or a common secondary role in calcium stone pathogenesis. UROLOGY 76: 1017.e13-1017.e20, 2010. (C) 2010 Elsevier Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据