4.6 Review

Constructing kinetic models of metabolism at genome-scales: A review

期刊

BIOTECHNOLOGY JOURNAL
卷 10, 期 9, 页码 1345-1359

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/biot.201400522

关键词

Approximate kinetic models; Constraint-based models; Genome-scale kinetic models; In silico modeling; Monte Carlo kinetic models

资金

  1. NSERC CREATE in Manufacturing, Materials and Mimetics (M3), Industrial Stream Training Program
  2. University of Toronto
  3. Alexander von Humboldt Foundation
  4. Samsung GRO program
  5. BioFuelNet Canada
  6. NSERC Canada

向作者/读者索取更多资源

Constraint-based modeling of biological networks (metabolism, transcription and signal transduction), although used successfully in many applications, suffer from specific limitations such as the lack of representation of metabolite concentrations and enzymatic regulation, which are necessary for a complete physiologically relevant model. Kinetic models conversely overcome these shortcomings and enable dynamic analysis of biological systems for enhanced in silico hypothesis generation. Nonetheless, kinetic models also have limitations for modeling at genome-scales chiefly due to: (i) model non-linearity; (ii) computational tractability; (iii) parameter identifiability; (iv) estimability; and (v) uncertainty. In order to support further development of kinetic models as viable alternatives to constraint-based models, this review presents a brief description of the existing obstacles towards building genome-scale kinetic models. Specific kinetic modeling frameworks capable of overcoming these obstacles are covered in this review. The tractability and physiological feasibility of these models are discussed with the objective of using available in vivo experimental observations to define the model parameter space. Among the different methods discussed, Monte Carlo kinetic models of metabolism stand out as potentially tractable methods to model genome scale networks while also addressing in vivo parameter uncertainty.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据