4.5 Article

SHUNT FLOW EVALUATION IN CONGENITAL HEART DISEASE BASED ON TWO-DIMENSIONAL SPECKLE TRACKING

期刊

ULTRASOUND IN MEDICINE AND BIOLOGY
卷 40, 期 10, 页码 2379-2391

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.ultrasmedbio.2014.03.029

关键词

2-D blood flow imaging; Speckle tracking; In vivo; Atrial septal defect; Ventricular septal defect

向作者/读者索取更多资源

High-frame-rate ultrasound speckle tracking was used for quantification of peak velocity in shunt flows resulting from septal defects in congenital heart disease. In a duplex acquisition scheme implemented on a research scanner, unfocused transmit beams and full parallel receive beamforming were used to achieve a frame rate of 107 frames/s for full field-of-view flow images with high accuracy, while also ensuring high-quality focused B-mode tissue imaging. The setup was evaluated in vivo for neonates with atrial and ventricular septal defects. The shunt position was automatically tracked in B-mode images and further used in blood speckle tracking to obtain calibrated shunt flow velocities throughout the cardiac cycle. Validation toward color flow imaging and pulsed wave Doppler with manual angle correction indicated that blood speckle tracking could provide accurate estimates of shunt flow velocities. The approach was less biased by clutter filtering compared with color flow imaging and was able to provide velocity estimates beyond the Nyquist range. Possible placements of sample volumes (and angle corrections) for conventional Doppler resulted in a peak shunt velocity variations of 0.49-0.56 m/s for the ventricular septal defect of patient 1 and 0.38-0.58 m/s for the atrial septal defect of patient 2. In comparison, the peak velocities found from speckle tracking were 0.77 and 0.33 m/s for patients 1 and 2, respectively. Results indicated that complex intraventricular flow velocity patterns could be quantified using high-frame-rate speckle tracking of both blood and tissue movement. This could potentially help increase diagnostic accuracy and decrease inter-observer variability when measuring peak velocity in shunt flows. (C) 2014 World Federation for Ultrasound in Medicine & Biology.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据