4.5 Article

INITIAL INVESTIGATION OF ACOUSTIC DROPLET VAPORIZATION FOR OCCLUSION IN CANINE KIDNEY

期刊

ULTRASOUND IN MEDICINE AND BIOLOGY
卷 36, 期 10, 页码 1691-1703

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.ultrasmedbio.2010.06.020

关键词

Acoustic droplet vaporization; Embolization; Blood flow reduction; Canine kidney; Transcutaneous vaporization; Ultrasound

资金

  1. NIH [R01 EB000281]

向作者/读者索取更多资源

Acoustic droplet vaporization (ADV) shows promise for spatially and temporally targeted tissue occlusion. In this study, substantial tissue occlusion was achieved in operatively exposed and transcutaneous canine kidneys by generating ADV gas bubbles in the renal arteries or segmental arteries. Fifteen canines were anesthetized, among which 10 underwent laparotomy to externalize the left kidney and five were undisturbed for transcutaneous ADV. The microbubbles were generated by phase conversion of perfluoropentane droplets encapsulated in albumin or lipid shells in the blood. A 3.5-MHz single-element therapy transducer was aligned with an imaging array in a water tank with direct access to the renal artery or a segmental artery. In vivo color flow and spectral Doppler imaging were used to identify the target arteries. Tone bursts of 1 kHz pulse repetition frequency with 0.25% duty cycle vaporized the droplets during bolus passage. Both intracardiac (IC) and intravenous (IV) injections repeatedly produced ADV in chosen arteries in externalized kidneys, as seen by B-mode imaging. Concurrent with this in two cases was the detection by pulse-wave Doppler of blood flow reversal, along with a narrowing of the waveform. Localized cortex occlusion was achieved with 87% regional flow reduction in one case using IC injections. Vaporization from IV injections resulted in a substantial echogenicity increase with an average half-life of 8 min per droplet dose. Gas bubbles sufficient to produce some shadowing were generated by transcutaneous vaporization of intrarenal artery or IV-administered droplets, with a tissue path up to 5.5 cm. (E-mail: maggiez@umich.edu) (C) 2010 World Federation for Ultrasound in Medicine & Biology.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据