4.7 Article

Ultrasound irradiation: A robust approach for direct functionalization of graphene oxide with thermal and antimicrobial aspects

期刊

ULTRASONICS SONOCHEMISTRY
卷 21, 期 4, 页码 1407-1416

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.ultsonch.2014.02.022

关键词

Graphene oxide; Sonochemical approach; Stereoselective functionalization; Thermal stability; Antimicrobial activity; Activation energy

资金

  1. JRF

向作者/读者索取更多资源

Sonochemical waves as mechanochemical energy was employed to exfoliate graphite oxide and functionalized graphene oxide (GrO), through a reaction of solvent and accountable for top-down and bottom-up approach respectively. The in situ formation of ester intermediate was inferred and a polymeric surface of GrO was further functionalized with 6-Aminoindazole (6-AIND) through sonochemical nucleophilic substitution reaction. As compared to conventional method the effect of ultrasound was verified for the direct functionalization of GrO. The conventional hazardous acylation step for functionalization of GrO was deleted in ultrasound assisted formation of f-(6-AIND) GrO nanocomposite, prepared by stereoselective exploitation of carboxyl groups at edges of GrO. The characterization has ascertained a covalent attachment of 6-AIND onto GrO surface with ATR-FTIR, XPS, SSNMR, TGA, DSC, XRD, AFM, RAMAN, EDX, SEM, BET and elemental analyzer. A weight loss in TGA depicts enhanced thermal stability of f-(6-AIND) GrO and a thermally sensitive behavior. The f-(6-AIND) GrO was studied for in vitro antimicrobial activity to ensure health and environmental safety. Antibacterial activity was identified against human pathogenic gram-positive (Staphylococcus aureus; ATCC 25923) and gram-negative bacteria (Escherichia coli; ATCC 25922). The antifungal activity was observed against Candida albicans (ATCC 10231). (C) 2014 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据