4.7 Article

Ultrasonic pretreatment for hydrothermal synthesis of SAPO-34 nanocrystals

期刊

ULTRASONICS SONOCHEMISTRY
卷 19, 期 3, 页码 554-559

出版社

ELSEVIER
DOI: 10.1016/j.ultsonch.2011.09.006

关键词

SAPO-34 molecular sieve; Nanocrystals; Sonochemical synthesis; Hydrothermal synthesis

向作者/读者索取更多资源

Synthesis of SAPO-34 nanocrystals which has been recently considered as a challenging task was successfully performed by sonochemical method using TEAOH as structure directing agent (SDA). The products were characterized by XRD, SEM, EDX, BET and TGA. The average crystal size of the final product prepared sonochemically is 50 nm that is much smaller than that of synthesized under hydrothermal condition and the morphology of the crystals changes from uniform spherical nanoparticles to spherical aggregates of cube type SAPO-34 crystals respectively. In the case of sample synthesized sonochemically with aid of hydrothermal condition, the surface area is significantly upper than that of obtained by the conventional static hydrothermal technology with almost the same crystallinity. SAPO-34 framework synthesized by just ultrasonic treatment is unstable and a significant part of SAPO-34 nanocrystals is transformed to the dense phase of AlPO4 structure, i.e., Cristobalite. Contrary to hydrothermal method that at least 24 h of the synthesis time is required to obtain fully crystalline SAPO-34, sonochemical-assisted hydrothermal synthesis of samples leads to form fully crystalline SAPO-34 crystals taking only 1.5 h. In a sonochemical process, a huge density of energy for crystallization is provided by the collapse of bubbles which formed by ultrasonic waves. The fact that small SONO-SAPO-34 crystals could be prepared by the sonochemical method suggests a high nucleation density in the early stages of synthesis and slow crystal growth after nucleation. (C) 2011 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据