4.7 Article

Improved mechanical properties of retorted carrots by ultrasonic pre-treatments

期刊

ULTRASONICS SONOCHEMISTRY
卷 19, 期 3, 页码 427-434

出版社

ELSEVIER
DOI: 10.1016/j.ultsonch.2011.10.019

关键词

Mechanical property; Cell wall structure; Carrot; Retort processing; Ultrasound pre-treatment; CaCl2

向作者/读者索取更多资源

The use of ultrasound pre-processing treatment, compared to blanching, to enhance mechanical properties of non-starchy cell wall materials was investigated using carrot as an example. The mechanical properties of carrot tissues were measured by compression and tensile testing after the pre-processing treatment prior to and after retorting. Carrot samples ultrasound treated for 10 min at 60 degrees C provided a higher mechanical strength (P < 0.05) to the cell wall structure than blanching for the same time period. With the addition of 0.5% CaCl2 in the pre-treatment solution, both blanching and ultrasound treatment showed synergistic effect on enhancing the mechanical properties of retorted carrot pieces. At a relatively short treatment time (10 min at 60 degrees C) with the use of 0.5% CaCl2, ultrasound treatment achieved similar enhancement to the mechanical strength of retorted carrots to blanching for a much longer time period (i.e. 40 min). The mechanism involved appears to be related to the stress responses present in all living plant matter. However, there is a need to clarify the relative importance of the potential stress mechanisms in order to get a better understanding of the processing conditions likely to be most effective. The amount of ultrasound treatment required is likely to involve low treatment intensities and there are indications from the structural characterisation and mechanical property analyses that the plant cell wall tissues were more elastic than that accomplished using low temperature long time blanching. Crown Copyright (C) 2011 Published by Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据