4.7 Article

Sonoluminescence and sonochemiluminescence from a microreactor

期刊

ULTRASONICS SONOCHEMISTRY
卷 19, 期 6, 页码 1252-1259

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.ultsonch.2012.04.008

关键词

Sonochemistry; Ultrasound; Sonoluminescence; Sonochemiluminescence; Microbubbles; Microreactors

资金

  1. Technology Foundation STW
  2. Applied Science Division of NWO
  3. Ministry of Economic Affairs, The Netherlands
  4. ARC, Australia

向作者/读者索取更多资源

Micromachined pits on a substrate can be used to nucleate and stabilize microbubbles in a liquid exposed to an ultrasonic field. Under suitable conditions, the collapse of these bubbles can result in light emission (sonoluminescence, SL). Hydroxyl radicals (OH.) generated during bubble collapse can react with luminol to produce light (sonochemiluminescence, SCL). SL and SCL intensities were recorded for several regimes related to the pressure amplitude (low and high acoustic power levels) at a given ultrasonic frequency (200 kHz) for pure water, and aqueous luminol and propanol solutions. Various arrangements of pits were studied, with the number of pits ranging from no pits (comparable to a classic ultrasound reactor), to three-pits. Where there was more than one pit present, in the high pressure regime the ejected microbubbles combined into linear (two-pits) or triangular (three-pits) bubble clouds (streamers). In all situations where a pit was present on the substrate, the SL was intensified and increased with the number of pits at both low and high power levels. For imaging SL emitting regions, Argon (Ar) saturated water was used under similar conditions. SL emission from aqueous propanol solution (50 mM) provided evidence of transient bubble cavitation. Solutions containing 0.1 mM luminol were also used to demonstrate the radical production by attaining the SCL emission regions. (C) 2012 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据