4.4 Article

Experimental charge density of hematite in its magnetic low temperature and high temperature phases

期刊

ULTRAMICROSCOPY
卷 120, 期 -, 页码 1-9

出版社

ELSEVIER
DOI: 10.1016/j.ultramic.2012.04.006

关键词

Convergent beam electron diffraction; Hematite

资金

  1. Alexander von Humboldt foundation
  2. Japan Society for the Promotion of Science (JSPS)

向作者/读者索取更多资源

Structural parameters of hematite (alpha-Fe2O3), including the valence electron distribution, were investigated using convergent beam electron diffraction (CBED) in the canted antiferromagnetic phase at room temperature and in the collinear antiferromagnetic phase at 90 K. The refined charge density maps are interpreted as a direct result of electron-electron interaction in a correlated system. A negative deformation density was observed as a consequence of closed shell interaction. Positive deformation densities are interpreted as a shift of electron density to antibinding molecular orbitals. Following this interpretation, the collinear antiferromagnetic phase shows the characteristic of a Mott-Hubbard type insulator whereas the high temperature canted antiferromagnetic phase shows the characteristic of a charge transfer insulator. The break of the threefold symmetry in the canted antiferromagnetic phase was correlated to the presence of oxygen-oxygen bonding, which is caused by a shift of spin polarized charge density from iron 3d-orbitals to the oxygen ions. We propose a triangular magnetic coupling in the oxygen planes causing a frustrated triangular spin arrangement with all spins lying in the oxygen planes. This frustrated arrangement polarizes the super-exchange between iron ions and causes the spins located at the iron ions to orient in the same plane, perpendicular to the threefold axis. (c) 2012 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据