4.4 Article

Kelvin force microscopy at the second cantilever resonance:: An out-of-vacuum crosstalk compensation setup

期刊

ULTRAMICROSCOPY
卷 108, 期 8, 页码 773-781

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.ultramic.2008.01.003

关键词

atomic force microscopy (AFM)

向作者/读者索取更多资源

We investigate the gap-voltage control loop in a Kelvin force microscopy setup with simultaneous non-contact topography imaging. The Kelvin controller electrostatically excites the second resonance of the cantilever at about 6.3 times the first resonance frequency and adjusts the DC component of the gap voltage to cancel the oscillation amplitude at this frequency, while the non-contact topography imaging is based on a frequency control loop that maintains a constant frequency of the mechanically excited first resonance of the cantilever by adjusting the tip-sample separation. Due to the self-excitation of the first resonance in our setup, it has to be considered that the electrostatic excitation at the second resonance frequency is applied to a closed feedback loop and cannot be considered as a simple superposition to the oscillation at the first resonance frequency. In particular, special care has to be taken about internal capacitive crosstalk between the tip bias and the cantilever deflection output signal. It is shown that such a coupling cannot be corrected by subtraction of a constant offset at the demodulator output since the crosstalk is sent into the self-excitation loop and is multiplied by the closed loop transfer function. We present a circuit that actively compensates, outside the vacuum environment, the internal crosstalk by adding to the deflection output a dephased fraction of the electrostatic excitation signal. (C) 2008 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据