4.7 Article

Coupling binder hydration, temperature and compressive strength development of underground cemented paste backfill at early ages

期刊

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.tust.2009.07.008

关键词

Coupled processes; Cemented paste backfill; Binder hydration; Tailings; Unconfined compressive strength; Modeling; FLAC

向作者/读者索取更多资源

Cemented paste backfill (CPB) is an engineered mixture containing up to 60% solid tailings, and 3-7% binder (often) and water. CBP is used in backfilling underground mine voids. It receives great interest as one of the most commonly used ways in mine backfilling around the world. The usage of CPB greatly contributes to the disposal of mining tailings waste from the surface, increasing working place stability to extract more minerals safely. The key parameter for the design of CPB structure is its strength: namely, unconfined compressive strength (UCS). Knowing the time at which the CPB reaches its reasonable strength is very important for reducing the mining cycle and ensuring the safety of mine workers. As a cemented material, CPB strength is time and temperature dependent, and a function of the degree of hydration. The objective of this paper is to develop a numerical model for predicting the UCS of undrained CPB. Strength development is coupled with temperature and degree of hydration. For validation purposes, the predicted UCS will be compared with three groups of experimental results. The results show a good agreement between the predicted and measured values, and a new formula is suggested for including the effect of temperature into the UCS of CPB. (C) 2009 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据