4.1 Article

The role of nuclear medicine in modern therapy of cancer

期刊

TUMOR BIOLOGY
卷 33, 期 3, 页码 629-640

出版社

SPRINGER
DOI: 10.1007/s13277-012-0373-8

关键词

Nuclear medicine; Molecular imaging; PET; SPECT; Cancer diagnosis; Cancer therapy

类别

向作者/读者索取更多资源

Nuclear medicine is a multidisciplinary field that develops and uses instrumentation and tracers (radiopharmaceuticals) to study physiological processes and noninvasively diagnose, stage, and treat diseases. Particularly, it offers a unique means to study cancer biology in vivo and to optimize cancer therapy for individual patients. A tracer is either a radionuclide alone, such as iodine-131 or a radiolabel in a carrier molecule such as F-18 in fluorodeoxyglucose (F-18-FDG), or other feasible radionuclide attached to a drug, a protein, or a peptide, which when introduced into the body, would accumulate in the tissue of interest. Nuclear medicine imaging, including single-photon emission computer tomography and positron emission tomography, can provide important quantitative and functional information about normal tissues or disease conditions, in contrast to conventional, anatomical imaging techniques such as ultrasound, computed tomography, or magnetic resonance imaging. For treatment, tumor-targeting agents, conjugated with therapeutic radionuclides, may be used to deposit lethal radiation at tumor sites. This review outlines the role of nuclear medicine in modern cancer therapy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据