4.4 Article

Numerical Study of the Load-Carrying Capacity of Lubricated Parallel Sliding Textured Surfaces including Wall Slip

期刊

TRIBOLOGY TRANSACTIONS
卷 57, 期 1, 页码 134-145

出版社

TAYLOR & FRANCIS INC
DOI: 10.1080/10402004.2013.854943

关键词

Critical Shear Stress; Load-Carrying Capacity; Surface Texturing; Wall Slip

向作者/读者索取更多资源

This article analyzes the combined effect of surface texturing and wall slip on the load-carrying capacity of parallel sliding systems. A new modified Reynolds equation with slip is proposed, based on the critical shear stress model, to reveal the hydrodynamic load-carrying capacity. A range of parameters such as texturing zone, texture cell aspect ratio, critical shear stress, and slip length are analyzed. It is shown that the optimal texturing zone length oscillates around 75% of the slider length. A slight shift of the optimized texturing zone toward the inlet of the contact is observed when the critical shear stress is increased. The numerical analysis also shows that there is a unique threshold value of the critical shear stress for every texture cell aspect ratio. When this ratio is increased, the threshold value increases, thus influencing the slip considerably. Slip has a positive effect on the load-carrying capacity for critical shear stress lower than the threshold value, whereas it has no effect on higher values. It is also found that in comparison with a solely textured surface, the load-carrying capacity of the combined textured/wall slip pattern can be increased by around 300% using the optimized slip parameters.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据