4.5 Article

Investigation of Wear Particles Generated in Human Knee Joints Using Atomic Force Microscopy

期刊

TRIBOLOGY LETTERS
卷 51, 期 1, 页码 161-170

出版社

SPRINGER/PLENUM PUBLISHERS
DOI: 10.1007/s11249-013-0160-8

关键词

Wear particle preparation; Atomic force microscopy; Surface morphology; Nanomechanical property

资金

  1. China Scholarship Council (CSC)
  2. Australian Research Council (ARC) [DP1093975]
  3. Australian Research Council [DP1093975] Funding Source: Australian Research Council

向作者/读者索取更多资源

Wear particle analysis can be potentially developed as an effective method for assessment of osteoarthritis (OA). To achieve this goal, the surface morphological and mechanical properties of human wear particles extracted from the osteoarthritic synovial joints with different OA grades need to be studied. Atomic force microscopy (AFM) has been used for cartilage analysis owing to its high resolution and the capability of revealing both mechanical properties and surface topographical data in three-dimensions. Few studies have been conducted on human wear particles due to difficulties in obtaining the samples and technical challenges in preparing wear debris samples for AFM investigations in a hydrated environment. This work aimed to develop a suitable preparation technique to study the mechanical properties and surface morphology of human wear particles using AFM. Wear particles were separated from synovial fluid samples which were collected from OA patients and deposited on an aldehyde functional plasma polymer surface to immobilise wear particles. They were imaged for the first time using AFM. The nanoscaled surface topographies and nanomechanical properties of the particles were obtained in a hydrated mode. The methodology established in this study enables investigations of the surface morphology and mechanical properties of wear particles at the nanoscale for better understanding of OA and the possibility of developing a new diagnostic method based on the wear debris analysis technique.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据