4.5 Article

Proteomic changes of Citrus roots in response to long-term manganese toxicity

期刊

TREES-STRUCTURE AND FUNCTION
卷 28, 期 5, 页码 1383-1399

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s00468-014-1042-x

关键词

Carbohydrates; Citrus; Glycolysis; Manganese (Mn)-toxicity; Root; Two-dimensional electrophoresis (2-DE)

类别

资金

  1. earmarked fund for China Agriculture Research System

向作者/读者索取更多资源

Fifty-three and thirty-nine differentially expressed protein spots were isolated from Mn-toxic Citrus sinensis and Citrus grandis roots, respectively. Mn-toxicity-induced changes in protein profiles greatly differed between the two species. Limited information is available on the manganese (Mn)-toxicity-responsive proteins in plant roots. 'Sour pummelo' (Citrus grandis) and 'Xuegan' (Citrus sinensis) seedlings were irrigated for 17 weeks with 2 (control) or 600 mu M (Mn-toxic) MnSO4. C. sinensis displayed more tolerance to Mn-toxicity than C. grandis, which may be related to more Mn accumulation in roots and less Mn distribution in shoots. Using two-dimensional electrophoresis (2-DE), we isolated 11 up-regulated and 42 down-regulated protein spots from Mn-toxic C. sinensis roots, and 25 up-regulated and 14 down-regulated protein spots from Mn-toxic C. grandis roots. This indicated more metabolic flexibility in C. sinensis roots, thus contributing to the Mn-tolerance of C. sinensis. According to the biological functional properties, these differentially expressed proteins in the two species were classified into the following categories: protein metabolism, nucleic acid metabolism, carbohydrate and energy metabolism, stress responses, cell wall and cytoskeleton, cell transport, signal transduction and fatty acid metabolism. Under Mn-toxicity, proteins involved in nucleic acid metabolism, glycolysis and cell transport were up-regulated in nontolerant C. grandis roots, and down-regulated in tolerant C. sinensis roots. The notable down-regulation of proteins in Mn-toxic C. sinensis roots with less accumulation of carbohydrates may provide an advantage to the net carbon balance by lowering related metabolic processes, and enhancing the Mn-tolerance of C. sinensis. To conclude, there are many important differences in Mn-toxicity-induced changes in protein profiles and metabolic responses between the two species.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据