4.5 Article

Within-twig biomass allocation in subtropical evergreen broad-leaved species along an altitudinal gradient: allometric scaling analysis

期刊

TREES-STRUCTURE AND FUNCTION
卷 23, 期 3, 页码 637-647

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s00468-008-0308-6

关键词

Allometry; Biomass allocation; Leaf size; Petiole; Twig; Subtropical evergreen broad-leaved forest

类别

资金

  1. Chinese Academy of Sciences [KZCX2-XB2-02]
  2. National Science Foundation of China [30670333]
  3. NCET

向作者/读者索取更多资源

We studied the effects of twig size and altitude on biomass allocation within plant twigs (terminal branches of current-year shoots), to determine whether species with large twigs/leaves or living at low altitude allocate a higher proportion of biomass to laminas than their counterparts with small twigs/leaves or living at high altitude. Stem mass, lamina mass and area, and petiole mass were measured for terminal branches of current-year shoots in 80 subtropical evergreen broad-leaved species belonging to 38 genera from 24 families along an altitudinal gradient of Mt. Emei, Southwest China. The scaling relationships between the biomass allocations of within-twig components were determined using model type II regression method. Isometric relationships were found between leaf mass and twig mass and between lamina mass and twig mass, suggesting that the biomass allocation to either leaves or laminas was independent of twig mass. Petiole mass disproportionally increased with both lamina mass and twig mass, indicating the importance of leaf petioles to the within-twig biomass allocation. These cross-species correlations were consistent with those among evolutionary divergences. In addition, species at low altitude tended to have a greater leaf and lamina mass but a smaller stem mass at a given twig mass than at middle and high altitudes. This is possibly due to the high requirement in physical support and the low efficiency of eco-physiological transport for the species living at high altitude. In general, within-twig biomass allocation pattern was not significantly affected by twig size but was greatly modulated by altitude.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据