4.7 Article

Oak loss increases foliar nitrogen, δ15N and growth rates of Betula lenta in a northern temperate deciduous forest

期刊

TREE PHYSIOLOGY
卷 32, 期 9, 页码 1092-1101

出版社

OXFORD UNIV PRESS
DOI: 10.1093/treephys/tps068

关键词

black birch; forest disturbance; nitrate reductase; nitrogen cycling; oak girdling; stable isotopes; temperate forest

类别

资金

  1. Black Rock Forest Consortium
  2. Garden Club of America Zone VI Fellowship
  3. U.S. National Science Foundation [DEB-0949387]

向作者/读者索取更多资源

Oak forests dominate much of the eastern USA, but their future is uncertain due to a number of threats and widespread failure of oak regeneration. A sudden loss of oaks (Quercus spp.) could be accompanied by major changes in forest nitrogen (N) cycles with important implications for plant nutrient uptake and tree species composition. In this study, we measured the changes in N use and growth rates of black birch trees (Betula lenta L.) following oak girdling at the Black Rock Forest in southeastern New York, USA. Data were collected from nine experimental plots composed of three treatments: 100% oaks girdled (OG), 50% oaks girdled (O50) and control (C). Foliar N concentration and foliar N-15 abundance increased significantly in the oak-girdled plots relative to the control, indicating that the loss of oaks significantly altered N cycling dynamics. As mineralization and nitrification rates increase following oak loss, black birch trees increase N absorption as indicated by higher foliar N content and increased growth rates. Foliar N concentration increased by 15.5% in the O50 and 30.6% in the OG plots relative to the control, while O50 and OG plots were enriched in N-15 by 1.08 parts per thousand and 3.33 parts per thousand, respectively (P < 0.0001). A 641% increase in black birch growth rates in OG plots suggests that this species is able to respond to additional N availability and/or increased light availability. The loss of oaks and subsequent increase in black birch productivity may have a lasting impact on ecosystem form and function.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据