4.7 Article

Chlorophyll a fluorescence analysis along a vertical gradient of the crown in a poplar (Oxford clone) subjected to ozone and water stress

期刊

TREE PHYSIOLOGY
卷 32, 期 8, 页码 976-986

出版社

OXFORD UNIV PRESS
DOI: 10.1093/treephys/tps062

关键词

chlorophyll a fluorescence; crown levels; JIP-test; open-top chambers; ozone; photosynthesis; poplar 'Oxford' clone; water stress

类别

资金

  1. General Directorate for Environmental Quality of Regione Lombardia
  2. Regional Agency for Services to Agriculture and Forests - E.R.S.A.F.
  3. Lombardy Foundation for the Environment (F.L.A.)
  4. Regional Agency for Environment Protection (A.R.P.A.)

向作者/读者索取更多资源

An experiment in open-top chambers was carried out in summer 2008 at Curno (Northern Italy) in order to study the effects of ozone and mild water stress on poplar cuttings (Oxford clone). In this experiment direct fluorescence parameters (JIP-test) were measured in leaves from different sections of the crown (L: lower; M: medium; U: upper parts of the crown). The parameters considered were calculated at the different steps of the fluorescence transient, and include maximum quantum yield efficiency in the dark-adapted state (F-v/F-M); the L-band, at 100 proportional to s, that expresses the stability of the tripartite system reaction centre-harvesting light complex-core antenna; the K-band, at 300 proportional to s, that expresses the efficiency of the oxygen-evolving complex; the J-phase, at 2 ms, that expresses the efficiency with which a trapped exciton can move an electron into the electron transport chain from Q(A)(-) to the intersystem electron acceptors; the IP-phase, which expresses the efficiency of electron transport around the photosystem 1 (PSI) to reduce the final acceptors of the electron transport chain, i.e., ferredoxin and NADP; and finally the performance index total (PItot) for energy conservation from photons absorbed by PSII to the reduction flux of PSI end acceptors. The main results are: (i) different dynamics were observed between leaves in the lower section, whose PItot decreased over time, and those in the upper sections in which it increased, with a dynamic connected to the leaf age; (ii) ozone depressed all the considered fluorescence parameters in basal leaves of well-watered plants, while it had little or no damaging effect on medium-level or upper-section leaves; (iii) PItot and IP-phase increased in upper leaves of plants subjected to ozone stress, as well as the net photosynthesis; (iv) water stress increased PItot of leaves in all levels of the crown. The results suggest that ozone-damaged poplar plants compensate, at least partially, for the loss of photosynthesis with higher photosynthetic rates in young leaves (in the upper section of the crown), more efficient to fix carbon.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据