4.7 Article

Interactive effects of water supply and defoliation on photosynthesis, plant water status and growth of Eucalyptus globulus Labill

期刊

TREE PHYSIOLOGY
卷 32, 期 8, 页码 958-967

出版社

OXFORD UNIV PRESS
DOI: 10.1093/treephys/tps066

关键词

compensatory response; leaf and canopy stomatal conductance; maximum leaf photosynthetic rate; soil-to-leaf hydraulic conductance; transpiration

类别

资金

  1. CRC for Forestry
  2. ARC [LP0454287]
  3. Australian Research Council [LP0454287] Funding Source: Australian Research Council

向作者/读者索取更多资源

Increased climatic variability, including extended periods of drought stress, may compromise on the health of forest ecosystems. The effects of defoliating pests on plantations may also impact on forest productivity. Interactions between climate signals and pest activity are poorly understood. In this study, we examined the combined effects of reduced water availability and defoliation on maximum photosynthetic rate (A(sat)), stomatal conductance (g(s)), plant water status and growth of Eucalyptus globulus Labill. Field-grown plants were subjected to two water-availability regimes, rain-fed (W-) and irrigated (W+). In the summer of the second year of growth, leaves from 75% of crown length removed from trees in both watering treatments and physiological responses within the canopies were examined. We hypothesized that defoliation would result in improved plant water status providing a mechanistic insight into leaf- and canopy-scale gas-exchange responses. Defoliated trees in the W+ treatment exhibited higher A(sat) and g(s) compared with non-defoliated trees, but these responses were not observed in the W- treatment. In contrast, at the whole-plant scale, maximum rates of transpiration (E-max) and canopy conductance (G(Cmax)) and soil-to-leaf hydraulic conductance (K-P) increased in both treatments following defoliation. As a result, plant water status was unaffected by defoliation and trees in the defoliated treatments exhibited homeostasis in this respect. Whole-plant soil-to-leaf hydraulic conductance was strongly correlated with leaf scale g(s) and A(sat) following the defoliation, providing a mechanistic insight into compensatory up-regulation of photosynthesis. Above-ground height and diameter growth were unaffected by defoliation in both water availability treatments, suggesting that plants use a range of responses to compensate for the impacts of defoliation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据