4.7 Article

Rooting depth explains [CO2] x drought interaction in Eucalyptus saligna

期刊

TREE PHYSIOLOGY
卷 31, 期 9, 页码 922-931

出版社

OXFORD UNIV PRESS
DOI: 10.1093/treephys/tpr030

关键词

forest hydrology; global climate change; plant water relations; root allocation; Sydney blue gum

类别

资金

  1. NSW Government [NSW T07/CAG/016]
  2. Australian Government's Department of Climate Change for the Hawkesbury Forest Experiment

向作者/读者索取更多资源

Elevated atmospheric [CO2] (eC(a)) often decreases stomatal conductance, which may delay the start of drought, as well as alleviate the effect of dry soil on plant water use and carbon uptake. We studied the interaction between drought and eC(a) in a whole-tree chamber experiment with Eucalyptus saligna. Trees were grown for 18 months in their C-a treatments before a 4-month dry-down. Trees grown in eC(a) were smaller than those grown in ambient C-a (aC(a)) due to an early growth setback that was maintained throughout the duration of the experiment. Pre-dawn leaf water potentials were not different between C-a treatments, but were lower in the drought treatment than the irrigated control. Counter to expectations, the drought treatment caused a larger reduction in canopy-average transpiration rates for trees in the eC(a) treatment compared with aC(a). Total tree transpiration over the dry-down was positively correlated with the decrease in soil water storage, measured in the top 1.5 m, over the drying cycle; however, we could not close the water budget especially for the larger trees, suggesting soil water uptake below 1.5 m depth. Using neutron probe soil water measurements, we estimated fractional water uptake to a depth of 4.5 m and found that larger trees were able to extract more water from deep soil layers. These results highlight the interaction between rooting depth and response of tree water use to drought. The responses of tree water use to eC(a) involve interactions between tree size, root distribution and soil moisture availability that may override the expected direct effects of eC(a). It is essential that these interactions be considered when interpreting experimental results.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据