4.7 Article

A comparison of growth, photosynthetic capacity and water stress in Eucalyptus globulus coppice regrowth and seedlings during early development

期刊

TREE PHYSIOLOGY
卷 29, 期 5, 页码 663-674

出版社

OXFORD UNIV PRESS
DOI: 10.1093/treephys/tpp006

关键词

carboxylation efficiency; defoliation; quantum yield; resprout; soil water; water-use efficiency

类别

资金

  1. Co-operative Research Centre for Forestry

向作者/读者索取更多资源

Eucalyptus globulus Labill., a globally significant plantation species, is grown commercially in a multiple rotation framework. Second and subsequent crops of E. globulus may be established either by allowing the cut Stumps to resprout (commonly referred to as coppice) or by replanting a new crop of seedlings. Currently, long-term growth data comparing coppice and seedling productivity in second or later rotations in southern Australia is limited. The capacity to predict productivity using these tools is dependent on an understanding of the physiology of seedlings and coppice in response to light, water and nutrient supply. In this Study, we compared the intrinsic (independent of the immediate environment) and native (dependent oil the immediate environment) physiology of E. globulus coppice and second-generation seedlings during their early development in the field. Coppice not only grew more rapidly, but also used more water and drew oil stored soil water to a depth of at least 4.5 m during the first 2 years of growth, whereas the seedlings only accessed the top 0.9 m of the soil profile. During the same period, there was no significant difference between coppice and seedlings in either their stomatal response to leaf-to-air vapour pressure difference (D) or intrinsic water-use efficiency; CO(2)- and light-saturated rates of photosynthesis were greater in seedlings than that in coppice as were the quantum yield of photosynthesis and total leaf chlorophyll content. Thus, at a leaf scale, seedlings are potentially more productive per unit leaf area than coppice during early development, but this is not realised under ambient conditions. The underlying cause of this inherent difference is discussed in the context of the allocation of resources to above- and below-ground organs during early development.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据